and benzimidazole. The generating source of II in the present work was the readily accessible o-diazobenzcarboxylate I, which undergoes mild thermal decomposition to carbon dioxide, nitrogen, and benzyne [2]

A dioxane solution of the heterocyclic compound plus a slight excess of I was stirred at $40^{\circ}-50^{\circ}$ C for 50-60 hr. Then the precipitate, sparingly soluble in water and organic solvents (apparently a polymer mixture) was filtered off, and the solvent distilled off from the filtrate. The N-phenyl derivative formed was extracted from the residue with ether, and isolated as its picrate. Yield of 1-phenyl derivative of imidazole (picrate mp $151^{\circ}-152^{\circ}$ C, ex water), and benzimidazole (picrate mp 181° C, ex EtOH), 21 and 29%, respectively. Replacement of dioxane by benzene recommended in the literature [2], cuts yield and reproducibility, possibly because benzene is not indifferent towards II [3].

An attempt to anylate imidazole and benzimidazole with bromobenzene in liquid ammonia in the presence of potassamide, (when bromobenzene initially gives benzyne [4]) was unsuccessful.

The new method of arylation may be suitable for introducing aryl groups into compounds with groups which are unstable under the drastic conditions of the Ullman-Goldberg reaction.

REF ERENCES

- 1. L. M. Sitkina and A. M. Simonov, KhGS [Chemistry of Heterocyclic Compounds], p. 143, 1966.
- 2. M. Stiles, R. Miller, and U. Burckhardt, J. Am. Chem. Soc., 85, 1792, 1963.
- 3. R. Miller and M. Stiles, J. Am. Chem. Soc., 85, 1798, 1963.
- 4. M. Kuehne and T. Kitagawa, J. Org. Chem., 29, 1270, 1964.

7 September 1965

Rostov -on -Don State University

UDC 547.853 + 547.466

N - (2-ETHYLTHIO-5-FLUOROPYRIMIDYL-4) AMINO ACIDS

R. A. Paegle, M. G. Plata, and M. Yu. Lidak

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 2, No. 3, pp. 474-475, 1966

Continuing research on (5-fluoropyrimidy1-4) amino acids [1], we have prepared hitherto unknown N-(2-ethyl-thio-5-fluoropyrimidyl) amino acids (I-VIII), by reacting a 2-ethylthio-4-chloro-5-fluoroacyl with amino acids:

HOOC-CH-R/
NH
NH-CH₂-CH₂COOH
$$H_5C_2S$$

$$H_5C_2S$$
VII

 $\mathbb{R}=H$ (I), $CH(CH_3)_2$ (II), $CH_2CH(CH_3)_2$ (III), $CH_2CH_2SCH_3$ (IV), $CH_2C_6H_5$ (V) and

I-VII are colorless crystalline compounds. Their physical constants, analytical data, and yields are given in the table.

N-(2-Ethylthio-5-fluoropyrimidyl-4) amino Acids

Pt	Mp °C	Formula	Found, %			Calculated, %			R_f in the system		
Compound no.			С	Н	N	С	н	N	n-C ₄ H ₉ OH— CH ₃ CO ₂ H— H ₂ O 4:1:5	iso- C ₃ H ₇ OH— H ₄ OH— H ₂ O 14:1:5	Yield, %
_											
I	215	$C_8H_{10}F_1N_3O_2S_1$	41.97	4.45	18.13	41.64	4.33	18.22		0.88	70
II	174	$C_{11}H_{16}F_1N_3O_2S_1$	48.24	5.85	15,33	48.33	5.86	15.12	0.85*	0.82	45
III	177	C ₁₂ H ₁₈ F ₁ N ₃ O ₂ S ₁	50.41	6.21	14,32	50.10	6.27	14.63	0.95	0.86	73
IV	173	$C_{11}H_{16}F_1N_3O_2S_2$	43.42	5.57	13.63	43.27	5.24	13.27	0.84*	0.90	62
v	186	C ₁₅ H ₁₆ F ₁ N ₃ O ₂ S ₁	56.37	5.58	13.05	56.07	4.98	13,08	0.85*	0.92	67
VI	198	C ₁₇ H ₁₇ F ₁ N ₄ O ₂ S ₁	56.42	5.48	15,70	56,32	5.27	16.00	0.94	0.87	69
VII	141	$C_9H_{12}F_1N_3O_2S_1$	44.11	4.43	17.34	44.08	4,89	17,14	0.89	0.90	52

^{*} $n - C_4 H_9 OH - CH_3 CO_2 H - G_2 O = 9:1:1.$

The chemical and biological properties of I-VII are under investigation.

REFERENCE

1. R. A. Paegle, M. G. Plata, and M. Yu. Lidak, KhGS [Chemistry of Heterocyclic Compounds], 1966 (in press).

28 September 1965

Institute of Organic Chemistry, AS LatvSSR, Riga